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Abstract. Using the theory of random cluster models, we give a stability criterion for financial markets
with random communications between agents.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.70.-a Thermodynamics –
89.90.+n Other topics of general interest to physicists

During the last two years an increasing number of physi-
cal concepts and models have been applied in the study of
financial markets [3,7,10,12,13]. In the present note, we
show how one can use some recent rigorous results on ran-
dom cluster models to obtain a market stability criterion.

The random cluster models have been discovered in
the seventies by Fortuin and Kasteleyn [8] and provide
a general framework containing as special cases the stan-
dard statistical physics processes (percolation, Ising and
Potts models). After the definition of the model we show
how the rigorous results of [9,2] can be applied to give a
criterion of the stability of financial markets with random
communications between agents.

In general, a random graph model Gn(p) consists of
all graphs of n vertices, with vertex set V = {1, 2, · · · , n}
and in which the edges are chosen independently and with
probability p (0 < p < 1). The edge-sets E are subsets of

the set of C2
n ≡

(
n
2

)
pairs of elements of V .

The measure

µn,p(E) =
∏
e∈E

p|E|(1− p)C2
n−|E|,

defined on the set E, describes the distribution of the ran-
dom graph Gn(p).

A number of classical results on this measure are due
to Erdős and Rényi. The interested reader can find the
general theory of random graphs and recent refinements
in [1].

Starting from the previous random graph measure, we
define the random cluster measure by

µn,p,q(E) =
∏
e∈E

p|E|(1− p)C2
n−|E|qκn(p,q),
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where q > 0 and κn(p, q) denotes the number of compo-
nents of the graph. For q = 1, the random cluster measure
reduces to the Erdős-Rényi random graph model. If q is a
positive integer the random cluster model corresponds to
a q-state Potts model with interaction J = − log(1 − p).
Moreover, in this case we can assume that the probability
p becomes a function of q.

Before presenting the criterion let us relate the ran-
dom cluster model to a financial market. The vertex set
V represents the agents. The trading activity of each agent
can be modelled by the parameter q; the simplest case we
shall consider here is when q = 3. This corresponds to the
three possibilities an agent can have either to buy, sell or
not to trade. A reasonable assumption is to consider that
the q values are uniformly distributed. The random graph
structure can model the possible communications between
agents. Each agent has a probability p(q), depending on
q, to align his action with any other agent. Thus, coali-
tions between agents could nicely be interpreted by the
components of the random graph. Inside each coalition all
agents have the same behaviour (i.e. the vertices of each
component have the same value of q). Moreover, the to-
tal number of agreements between agents is given by the
number of edges of Gn(p, q).

Having this in mind we can define the market as stable
if the total number of agreements between agents remains
smaller than a critical value. This value corresponds to
the appearance of a giant component in the random graph
Gn(p, q) (the giant coalition leads to a market boom or
krach).

The case q = 1 has been used in [6] for the study of the
herd behaviour and aggregate fluctuations and recently
generalised in [14,4,15,5,16]. Although in the introduced
model the parameter q equals to 3, all estimations are valid
only for q = 1. Indeed, the probability p considered in [6]
has the form c

n where the constant c has values close to
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and smaller than 1 (the critical value of c being 1). This is
the case for q = 1; for different values of q the parameter
c is assumed to be a function of q. In our case, q = 3 and
p = c(q)

n . The critical value of ccr(q) is defined [2] by

ccr(q) = 2
q − 1
q − 2

log(q − 1) = 4 log 2 = 2.77.

It can be shown, using the techniques of[1] and [2], that if
c(q) < ccr(q) (subcritical case), the random graphGn(p, q)
comprises only trees and unicyclic components. Moreover,
in the limit n → ∞, the number of edges in Gn(p, q) is
c(q)n

2q + o(n). We omit here the rather technical proof.
We can now give the stability criterion: Consider a

stock market with n agents trading in a given asset. As-
sume that each agent has the possibility either to buy, sell
the stock or not to trade. Moreover, each agent can agree
with other agents to have the same trading behaviour. We
define the market as stable if the total number of agree-
ments between the n agents is always smaller than 0.46n.
(This corresponds indeed to the number of edges of the
graph for c(q) = ccr(q)).

It should be noticed that the estimations based on the
random graph theory are valid in the limit n→∞. Trad-
ing agents being finite sets, there is a certain amount of
ambiguity about the way in which the proposed models
can be applied. However, in the main active markets the
number of traders is sufficiently big to guarantee that such
results can be used.

Let us note that the theory of the random cluster
model on a complete graph is valid not only for integer
values of the parameter q. Indeed, this could be used for
the study of more realistic situations where the agents are
allowed to fix a set of prices. In a forthcoming paper we will

consider this case and we will use large deviation theory to
calculate also the number of agent coalitions (components
of the graph) [11].
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